Actividades UNIDAD Nº1

1. Determinar si las siguientes distribuciones son de densidad de probabilidad conjunta:

a)

n		Υ		
P_{XY}		0	1	2
	1	0,2	0,1	0,1
Χ	2	0,1	0,2	0,3
	3	0,2	0,1	0,2

D			Υ	
P _{XY}		1	2	3
X	0	0,3	-0,1	0,2
	1	0,4	0,1	0,1

c)

D		Υ		
P_{XY}		20	30	
Χ	1	0,1	0,3	
	2	0,4	0,2	

2. Dada la siguiente distribución de probabilidad conjunta:

	P _{XY}		Υ			
			1	2	3	5
	Х	0	5/35	3/35	2/35	2/35
		1	2/35	4/35	3/35	1/35
		2	2/35	1/35	2/35	2/35
		3	1/35	1/35	2/35	2/35

a)
$$P(X=1 ^ Y=2)=$$

c)
$$P(X < Y) =$$

$$d) P(X>1)=$$

3. Determinar si las siguientes funciones son de densidad de probabilidad conjunta:

a)
$$f_{XY}(x,y) = \begin{cases} \frac{3}{8}(x+y)^2 & -1 < x < 1 \; ; \; -1 < y < 1 \\ 0 & \forall \; otro \; (x,y) \in \Re^2 \end{cases}$$
b)
$$f_{XY}(x,y) = \begin{cases} \frac{3}{4}(x+y)^2 & -1 < x < 1 \; ; \; -1 < y < 1 \\ 0 & \forall \; otro \; (x,y) \in \Re^2 \end{cases}$$

4. Hallar las distribuciones marginales del ejercicio 2 de distribución conjunta (UNIDAD Nº1):

$$f_{XY}(x, y) = \begin{cases} \frac{1}{3} & 2 < x < 3 ; 1 < y < 4 \\ 0 & \forall otro (x, y) \in \Re^2 \end{cases}$$

5. Hallar las distribuciones marginales de:

$$f_{XY}(x, y) = \begin{cases} \frac{x + y}{4} & 0 < x < 2; \ 0 < y < x \\ 0 & \forall \ otro \ (x, y) \in \Re^2 \end{cases}$$

6. Se tienen las variables aleatorias discretas X e Y cuyas distribución conjunta es:

2		Y				
P_{XY}		0	1	2	3	
	1	0,02	0,05	0,03	0,06	
Χ	2	0,10	0,03	0,07	0,04	
	4 0,02		0,08	0,04	0,15	
	8	0,09	0,11	0,06	0,05	

Calcular: a) Hallar las

- distribuciones condicionales $P_{X/Y}$ y $P_{Y/X}$
- b) Calcular:
 - P(X=4/Y>1)=i)
 - P(X=2/Y=3)=ii)
 - iii) P(X>2/Y=2)=
- c) Si se sabe que en un determinado experimento Y arrojó el valor 0. distribuyen ¿Cómo se probabilidades de X?

7. Se tienen las variables aleatorias continuas X e Y, cuya distribución conjunta es:

$$f_{XY}(x, y) = \begin{cases} \frac{40}{2637} xy^2 & y < -x + 6 ; y < x^2 ; y > 1 \\ 0 & \forall otro (x, y) \in \Re^2 \end{cases}$$

- a) Hallar las distribuciones condicionales $f_{X/Y}$ y $f_{Y/X}$
- b) Calcular:
 - i) P(X>3/Y>2)=
 - ii) P(X>3/Y=2)=
- c) Si se sabe que un experimento Y arrojó el valor 3, ¿Cómo se distribuyen las probabilidades de X?
- d) Calcular:
 - i) P(Y<3/X=1,5)=
 - ii) P(Y<2/X=3)=
 - iii) P(Y<2/X=2)=
- 8. De igual manera es posible analizar si X e Y son independientes dada su distribución:

$$f_{XY}(x, y) = \begin{cases} \frac{x + y}{42} & 0 < x < 4 ; 0 < y < 3 \\ 0 & \forall otro (x, y) \in \Re^2 \end{cases}$$

9. Dadas las variables aleatorias discretas X e Y, cuya distribución conjunta es:

I	D			Υ	
	P_{XY}		1	2	3
	Χ	1	0,12	0,1	0,08
		2	0,28	0,2	0,22

D			Υ	
P_{XY}		1	2	3
Χ	1	0,08	0,12	0,2
	2	0,12	0,18	0,3

Analizar si se cumple: $P_{XY}(x,y) = P_X(x)$. $P_Y(y)$. Es decir, si son o no independientes.

10. Se tienen las variables aleatorias X e Y, cuya distribución conjunta es:

$$f_{XY}(x, y) = \begin{cases} \frac{2}{105} x^2 y & 1 < x < 4 ; 2 < y < 3 \\ 0 & \forall otro (x, y) \in \Re^2 \end{cases}$$

- a) Hallar las distribuciones marginales
- b) Analizar si las variables aleatorias X e Y son independientes.
- c) Obtener las esperanzas condicionales e indicar de acuerdo a su resultado cuál es la información que nos brindan dichos resultados.